Cartpole ================================================== Description -------------------------------------------------- Environment to simulate a Cartpole System. Equation -------------------------------------------------- .. math:: \ddot{\theta_t}= \frac{g\sin{\theta_t}+\cos{\theta_t}[\frac{-F_t-ml{\dot{\theta_t}}^2 \sin{\theta_t}+\mu_c \textrm{sgn}({\dot{x_t}})}{m_c+m_p}]-\frac{\mu_p \dot{\theta_t}}{m_p l}}{l [\frac{4}{3}- \frac{m_p {\cos^2{\theta_t}}}{m_c + m_p}]} \\ \ddot{x_t}= \frac{F_t + m l [{\dot{\theta_t}}^2 \sin{\theta_t}- \ddot{\theta_t} \cos{\theta_t}]-\mu_c \textrm{sgn}(\dot{x_t})}{m_c + m_p} Parameters -------------------------------------------------- | :math:`\mu_{p}`: Coefficient of friction of pole on cart | :math:`\mu_{c}`: Coefficient of friction of cart on track | :math:`l`: Half-pole length | :math:`m_{c}`: Mass of cart | :math:`m_{p}`: Mass of pole | :math:`g`: Gravitational acceleration Action -------------------------------------------------- ====== ======================== ============== Num Term in Equation Term in Class ====== ======================== ============== 0 :math:`F_t` force ====== ======================== ============== States -------------------------------------------------- ====== ======================== ============== Num Term in Equation Term in Class ====== ======================== ============== 0 :math:`x_t` deflection 1 :math:`\dot{x_t}` velocity 2 :math:`\theta_t` theta 3 :math:`\dot{\theta_t}` omega ====== ======================== ============== Class -------------------------------------------------- .. autoclass:: exciting_environments.cart_pole.cart_pole_env.CartPole :members: