Cartpole

Description

Environment to simulate a Cartpole System.

Equation

\[\begin{split}\ddot{\theta_t}= \frac{g\sin{\theta_t}+\cos{\theta_t}[\frac{-F_t-ml{\dot{\theta_t}}^2 \sin{\theta_t}+\mu_c \textrm{sgn}({\dot{x_t}})}{m_c+m_p}]-\frac{\mu_p \dot{\theta_t}}{m_p l}}{l [\frac{4}{3}- \frac{m_p {\cos^2{\theta_t}}}{m_c + m_p}]} \\ \ddot{x_t}= \frac{F_t + m l [{\dot{\theta_t}}^2 \sin{\theta_t}- \ddot{\theta_t} \cos{\theta_t}]-\mu_c \textrm{sgn}(\dot{x_t})}{m_c + m_p}\end{split}\]

Parameters

\(\mu_{p}\): Coefficient of friction of pole on cart
\(\mu_{c}\): Coefficient of friction of cart on track
\(l\): Half-pole length
\(m_{c}\): Mass of cart
\(m_{p}\): Mass of pole
\(g\): Gravitational acceleration

Action

Num

Term in Equation

Term in Class

0

\(F_t\)

force

States

Num

Term in Equation

Term in Class

0

\(x_t\)

deflection

1

\(\dot{x_t}\)

velocity

2

\(\theta_t\)

theta

3

\(\dot{\theta_t}\)

omega

Class